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Security protocols, such as key-exchange and key-
management protocols, are short, but notoriously difficult to
prove correct. Flaws have been found in numerous protocols,
ranging from the the 802.11 Wired Equivalent Privacy (WEP)
protocol used to protect link-layer communications from
eavesdropping and other attacks [1] to standards and proposed
standards for Secure Socket Layer [2], [3] to Kerberos [4]. Not
surprisingly, a great deal of effort has been devoted to proving
the correctness of such protocols. There are two largely
disjoint approaches. The first essentially ignores the details of
cryptography by assuming perfect cryptography (i.e., nothing
encrypted can ever be decrypted without the encryption key)
and an adversary that controls the network. By ignoring the
cryptography, it is possible to give a more qualitative proof of
correctness, using logics designed for reasoning about security
protocols. Indeed, this approach has enabled axiomatic proofs
of correctness and model checking of proofs (see, for example,
[5], [6]). The second approach applies the tools of modern
cryptography to proving correctness, using more quantitative
arguments. Typically it is shown that, given some security
parameter k (where k may be, for example, the length of the
key used) an adversary whose running time is polynomial in
k has a negligible probability of breaking the security, where
“negligible” means “less than any inverse polynomial function
of k” (see, for example, [7], [8]). There has been recent work
on bridging the gap between these two approaches, with the
goal of constructing a logic that can allow reasoning about
quantitative aspects of security protocols while still being
amenable to mechanization. This line of research started with
the work of Abadi and Rogaway [9]. More recently, Datta et al.
[10] showed that by giving a somewhat nonstandard semantics
to their first-order Protocol Composition Logic [11], it was
possible to reason about many features of the computational
model. In this logic, an “implication” of the form φ ⊃ B is
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interpreted as, roughly speaking, the probability of B given φ
is high. For example, a statement like secret encrypted
⊃ adversary does not decrypt the secret says
“with high probability, if the secret is encrypted, the adversary
does not decrypt it”. While the need for such statements should
be clear, the probabilistic interpretation used is somewhat
unnatural, and no axiomatization is provided by Datta et al.
[10] for the ⊃ operator (although some sound axioms are given
that use it).

The interpretation of ⊃ is quite reminiscent of one of the
interpretations of → in conditional logic, where φ → ψ
can be interpreted as “typically, if φ then ψ” [12]. Indeed,
one semantics given to →, called ε-semantics [13], [14], is
very close in spirit to that used in [10]; this is particularly
true for the formulation of ε-semantics given by Goldszmidt,
Morris, and Pearl [15]. In this formulation, a formula φ→ ψ
is evaluated with respect to a sequence (Pr1,Pr2, . . .) of
probability measures (probability sequence, for short): it is
true if, roughly speaking, limn→∞ Prn(ψ | φ) = 1 (where
Prk(ψ | φ) is taken to be 1 if Prk(φ) = 1). This formulation
is not quite strong enough for some security-related purposes,
where the standard is super-polynomial convergence, that is,
convergence faster than any inverse polynomial. To capture
such convergence, we can take φ→ ψ to be true with respect
to this probability sequence if, for all polynomials p, there
exists n∗ such that, for all n ≥ n∗, Prn(ψ | φ) ≥ 1− 1/p(n).
(Note that this implies that limn→∞ Prn(ψ | φ) = 1.) In a
companion paper [16], it is shown that reinterpreting→ in this
way gives an elegant, powerful variant of the logic considered
in [10], which can be used to reason about security protocols
of interest.

While it is already a pleasant surprise that conditional logic
provides such a clean approach to reasoning about security,
using conditional logic has two further significant advantages,
which are the subject of this paper. The first is that, as I show
here, the well-known complete axiomatization of conditional
logic with respect to ε-semantics continues to be sound and
complete with respect to the super-polynomial semantics for
→; thus, the axioms form a basis for automated proofs.
The second is that the use of conditional logic allows for a



clean transition from qualitative to quantitative arguments. To
explain these points, I need to briefly recall some well-known
results from the literature.

As is well known, the KLM properties [12] provide a sound
and complete axiomatization for reasoning about → formulas
with respect to ε-semantics [17]. More precisely, if ∆ is a
collection of formulas of the form φ′ → ψ′, then ∆ (ε-)entails
φ → ψ (that is, for every probability sequence P , if every
formula in ∆ is true in P according to ε semantics, then so
is φ → ψ), then φ → ψ is provable from ∆ using the KLM
properties. This result applies only when ∆ is a collection of
→ formulas. ∆ cannot include negations or disjunctions of
→ formulas. Conditional logic extends the KLM framework
by allowing Boolean combinations of → statements. A sound
and complete axiomatization of propositional conditional logic
with semantics given by what are called preferential structures
was given by Burgess [18]; Friedman and Halpern [19] proved
it was also sound and complete for ε-semantics.

Propositional conditional logic does not suffice for reason-
ing about security. The logic of [10] is first-order; quantifi-
cation is needed to capture important properties of security
protocols. A sound and complete axiomatization for the lan-
guage of first-order conditional logic, denoted LC , with respect
to ε-semantics is given by Friedman, Halpern, and Koller
[20]. The first major result of this paper shows a conditional
logic formula φ is satisfiable in some model M with respect
to ε-semantics iff it is satisfiable in some model M ′ with
respect to the super-polynomial semantics. It follows that all
the completeness results for ε-semantics apply without change
to the super-polynomial semantics.

I then consider the language L0
C which essentially con-

sists of universal → formulas, that is, formulas of the form
∀x1 . . . ∀xn(φ→ψ), where φ and ψ are first-order formulas.
As in the KLM framework, there are no nested→ formulas or
negated → formulas. The second major result of this paper is
to provide a sound and complete axiomatization that extends
the KLM properties for reasoning abut when a collection of
formulas in L0

C entails a formula in L0
C .

It might seem strange to be interested in an axiomatization
for L0

C when there is already a sound and complete axiom-
atization for the full language LC . However, L0

C has some
significant advantages. In reasoning about concrete security,
asymptotic complexity results do not suffice; more detailed
information about security guarantees is needed. For example,
we may want to prove that an SSL server that supports
1,000,000 sessions using 1024 bit keys has a probability
of 0.999999 of providing the desired service without being
compromised. I show how to convert a qualitative proof of
security in the language L0

C , which provides only asymptotic
guarantees, to a quantitative proof. Moreover, the conversion
shows exactly how strong the assumptions have to be in order
to get the desired 0.999999 level of security. Such a conversion
is not possible with LC .

This conversion justifies reasoning at the qualitative level.
A qualitative proof can be constructed without worrying about
the details of the numbers, and then automatically converted

to a quantitative proof for the desired level of security.
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